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Noether's theorem and accidental degeneracy* 

0 Castaiios and R Lbpez-Pefia 
lnstituto de Ciencias Nucleares, Univemidad Nacional Au16noma de M k i c o  Circuit0 
Exterior, C U Apanado Postal 76-543 04510 Mixim, D E Mhico 

Received 10 June 1992 

AbsIrecL It is s h m  that lhe determination of the symmetly t i e  algebra ai a quantum 
syslem with accidental degeneracy can be obtained, in principle, by using Noelher's 
lheorem. The procedure is illustrated by mnsidering a quantum syslem which represents 
a generalizalion of the degeneracies present in an anisotropic two-dimensional harmonic 
oscillator. ?bus, besides Ihe u(2) algebra which gives the fundamental degeneracy of a 
two-dimensional oscillator, !he studied system can have an infinite set of sBtes with the 
Same energy characterized bj an u(1, 1) lie algebra. 

1. Intmduction 

The two classical examples which show accidental degeneracy are the harmonic 
oscillator and the Coulomb potentials [1,2]. In both cases, the apparent symmetry of 
the problem is spherical SO(3) but there are additional non-geometric degeneracies 

interested in the study of the accidental degeneracy of the Hamiltonian 
which are o'osemed io ~ ~ U I ,  are aiied acci(jeniai, in ifle present - ~ p ~ r  we 

1 
= 5 + z f )  + 

which is a two-dimensional harmonic oscillator plus the projection of the angular 
momentum in the z direction, M. We use atomic units, h which h = m = e = 1 
and X is a constant parameter. The quantum system (1.1) for X = 1 describes the 
motion of an electron in a constant magnetic field [3,4], and its symmetry Lie algebra 
has been found recently by Moshinsky et al [4]. 

In this analysis we are going to establish a procedure using Noether's theorem 
[5] to get the symmetry algebra of the Hamiltonian systems (1.1). This is done for 
rdiioiiai v.aiues Uf fie 
er al. Also we want to stress that the Hamiltonian (1.1) represents a generalization 
of the degeneracies present in the  anisotropic two-dimensional harmonic oscillator 

For the purposes of this paper it is convenient to introduce the creation and 

.wilich h-liiciude ihe ases Gisc.uss& ;y. t"fahinsk-y. 

[6 71. 
annihilation operators 
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as well as the corresponding operators in component form denoted by the indices f 
which are defined as 

0 Castarios and R L6pez-Peria 

1 1 
Q = - 4 7 1  f i d  C+ = -(CI T i t z )  (1.3) Ji Jz 

with the properties 

Besides the Hermitean conjugate of (q*)+ = E+.  It is straightforward to find the 
expression of the Hamiltonian (1.1) in terms of these operators 

H = (1+ X)N,+(l-  X)N- (1.5) 

where a constant term was neglected and N,; a = f, denotes the number of quanta 
in direction a. The eigenstates of (1.5) are well !mown and can be denoted by the 
kets 

with F+[O) = 0. These states in terms of the polar coordinates representation ( p , 6 )  
are given by 

( P ,  +In+, .-) 

where U = n+ + n-; m = n+ - n- and Lkm’((p2) is a Laguerre polynomial. 
The eigenvalues of (1.5) can be denoted by 

E , ,  = (1 + X)n+ + ( 1  - A)n- = U + Am (1.8) 

with Iml = U, U - 2 .  , . 1 or 0. From this expression for the energies, it is immediately 
passible to see that (1.8) will present degeneracy for rational values of A, which in 
general can be denoted as follows: 

”, - vi - Au A = - - - -  
Am m, - mi 

Thus the accidental degeneracy associated with the Hamiltonian (1.5) can be classified 
according to the strength of the parameter X in three groups 

x = f l  

x > 1  A < - 1  
-1  < x < 1. 

(1.1oa) 

(1.1ob) 
(1.loc) 
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Flgun l. Exampla of the degeneracy presenl in Hamiltonian (1.5) for Ihe 01ses: (i) 
X = 1, X = -1, full line; (ii) X < -1. dol-dashed line; (iii) X > 1, dashed line; and 
(!"I -1 < A < 1; do!!& line. 

For the cases (1.lOa) and (1.lOb). we can observe from figure 1 an infinite number 
of levels with the Same energy, while for the case (l.l&), which includes the value 
X = 0, there is a finite number of levels with the same energy. 

Now we turn our attention to the case (l.loC) with the anisotropic two-dimensional 
harmonic oscillator. Comparing equation (1.5) with equation (2.5) of 161, we 
see, except for constant terms, that they are equivalent systems if we make the 
identification 

(1.lla) 

(1.llb) 

with 

r = L C M ( ~ A ~  + Aul, lAm - A u l ) .  (Lllc) 

~ c M ( n ~ , n ~ )  defines the lowest common multiple of the positive integers n l  and 
n? By using equations (1.11) it is easy to show that ti+ and K -  are relative prime 
integers. Of &urse, the parameter X must he restricted to rational values in the 
interval -1 < X < 1, which means lAu[ < IAml. In this sense, we say the 
Hamiltonian (1.5) is a generalization of the two-dimensional anisotropic oscillator, 
because it has additional accidental degeneracy for the cases when X takes the values 
indicated in (1.1Oa) and (1.lOb). These cases are equivalent to considering negative 
or zero frequencies for the two oscillators. 

In [7] it was shown that for each X there are K + K :  copies of the fundamental 
degeneracy pattern associated with the two-dimensional Isotropic harmonic oscillator. 
In the section 2, we describe Noether's theorem and consider as an example a one- 
dimensional Hamiltonian of the form T + V ( q ) .  In section 3 by using the Noether 
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theorem we find the classical symmetry Lie algebra of the generalized two-dimensional 
anisotropic harmonic oscillator. In the section 4, we discuss, for ail the cases of A,  
the corresponding symmetry Lie algebras which are responsible of the accidental 
degeneracy of the Hamiltonian (1.5). Finally some conclusions and remarks are 
made. 

2. Description of the Noether's theorem 

We are going to use Noether's theorem in its active version [SI. Given a Lagrangian, 
which is, in general, a function of the coordinates, velocities and time 

then an arbitrary infinitesima! rransfnrma!ion af *e Pnardin2tes p' 

q' -+ 4' + 617' (2.2) 

is a symmetry transformation if the variation induced on the Lagrangian can be 
written as a total time derivative of a function S2 

(2.3) 

Noether's theorem states that to the symmetry transformation (2.2) there corresponds 
a constant of the motion, of the Noether charge, given by 

In this work we are interested in considering only time independent variations 
6q', since these give rise to energy preserving symmetries, i.e. conserved quantities 
whose Poisson bracket with the Hamiltonian vanishes. It is easy to show that these 
constants of the motion are closed among themselves and form a Lie algebra under 
the Poisson bracket operation 191. In general the algebra is infinite-dimensional but 
we ate interested oniy in the minimai subset of constants of the motion which are 
closed and the associated quantum operators must connect all the states with the Same 
energy. This minimal set of constants of motion define the symmetry algebra for the 
system. AE an example let us consider a one-dimensional system whose Lagrangian 
is given by 

It is well known that a variation of the form 6 9  = e q  gives a Noether charge 
proportional to the Hamiltonian of the system. If we propose a general transformation 

6 q  = F ( q ,  4) (2.6) 

where F is an arbitrary function of the coordinate q and velocity q ,  the corresponding 
variation induced in the Lagrangian is 
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If we Want (2.6) to be a symmetry transformation, we must find a function 
= Q ( q ,  q )  such that 

. an,. a n .  6 L = Q = - q + - q .  a4 aq 

Comparing expressions (2.7) and (2.8) one finds that the following system of partial 
differential equations must be satisfied 

( 2 . 9 ~ )  

(2.96) 

The integrability condition for this system, namely equality in crossed partial 
derivatives, yields a linear partial differential equation of first-order for F 

. , a ~  . a v a ~  av 
aq a4 aq a4 q--q--+-F=O. (2.10) 

This equation can be solved through the characteristics method [lo]. Solving the 
system 

(2.11) 

we get 

F = GG ( i4’  + V ( q ) )  (2.12) 

where G in an arbitrary function of the Hamiltonian H .  Integrating (2.90) we have 

n=@F(q,q)-/qdq’F(q,q‘)+ 444) (2.13) 

where +(q)  is an arbitrary function. Substituting (2.13) into equation (2.96) and 
using (2.12), it a n  be shown that +(q )  is a constant that can be neglected. The 
corresponding constant of motion is 

li. = qF(q,cj) - n = dH’ G( H’) (2.14) 

that is, an arbitrary function of the Hamiltonian. This result implies that for a 
classical system in one-dimension the symmetry algebra has only one generator, the 
Hamiltonian. 

J” 
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3. Classical symmetry algebra for the Hamiltonian 

In this section we apply Noether's theorem to the system described by Hamiltonian 
(1.5). Therefore we must obtain the corresponding Lagrangian. One of the Hamilton 
equations tells us 

0 CastaAos and R L6pez-Peria 

. a~ 
xa = - = &Pa 

aP, 

where to simplify the notation we associate indices 1 and 2 with the labels + and 
-, and we defined A, = 1 + X and A, = 1 - X . From here on we adopt a 
modified summation convention: repeated indices are summed except when one of 
them appears with A; for example, in equation (3.1) there is no sum over index a. 
The Lagrangian is defined in terms of the Hamiltonian as 

1 L = i , p , - H = - ( ' 2  xa - X,X,) ' (3.2) 2x0 

Let us propose a symmetry transformation in terms of an arbitrary function of 
coordinates and velocities 

6 1 ,  = F a ( x b , i b ) .  (3.3) 

The corresponding variation induced in the Lagrangian (3.2) is 

(3.4) 
a L  
ai,, 6L=(6x,,)'-+(6xa)- = 

Because (3.3) is a symmetry transformation of the system, the last expression must 
be a total time derivative 

dn ._ an an --xb-+xb- - 
d t  ai ,  axb  

implying that the following system of equations must be satisfied 

an 1 . aFb 
a?,, A, a i ,  

- - - -xb- 

an 1 . . aF, 
xa- - - -xbxa- - Faxax:, ax, A, ax, 

(3.5) 

In order to establish the consistency conditions for this system, we must solve for 
an /ax , .  For this we derive (3.6) with respect to xe and (3.7) with respect to x,, 
and compare the results to obtain 

-= an ax& A, axc a x b  a i ,  -- 1 aFb.  xc + --xc 1 aF,, - X,X.,-' a Fe (3.8) 
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Now the integrability conditions can be established by asking for equality between 
the five crossed partial derivatives of R. This gives rise to the following system of 
second-order partial differential equations 

(3.90) 

where the change from velocities to momenta 6, = Asp, was made, and we have 
defined the differential operator as 

From equation (3%) it is immediately seen that Fk = aC/ap , .  This means that 
the function G is the generator of the symmetry transformation, Through the change 
of variables 

and its complex conjugate, z;, it is immediately seen that the operator 0 takes the 
form 

with Nk = z k a / a z k .  Using the results indicated above, the differential equations 
(3.9b) and (3 .9~)  can he rewritten in the following form 

(3.1la) 

(3.11b) 
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where the parameters 6,, k = 1,2,3,  take WO sets of values: (6,,6,,6,) = 
( A ,  -1, - A )  or ( l , l ,  I). 'Ib solve equations (3.11) we propose a solution in terms 
of powers of the variables zk  and 2; 

0 CastaAos and R Ldpez-Petia 

G ( z k , z ; )  = ~ ~ ' 2 ~ ~ z ; " ' z ; " '  

where n i , i  = 1 ,2 ,3 ,4  are integer numbers. Substitution of this expression into 
(3 .11~)  and (3.11b) yields the conditions 

(3.12) 

where in the last equality the equation (1.9) was used. The integers k, and k, are 
relatively prime integers, and the parameter c takes the value 1 or -1. It takes the 
value 1 when A m  + A u  and AV - A m  have the same sign, and -1  otherwise. Thus 
we get, besides the trivial solution, six fundamental solutions, although only three of 
them are independent. Then the corresponding conserved quantities are given by 

From this set we must find a symmetry algebra for the classical system. It is 
important to realize that to build the algebra once we select a conserved quantity 
its complex conjugate must be included. Therefore, from (3.13) we must choose 
three independent constants of motion and their complex conjugates. lb do this, 
it is convenient to find separately, for the cases indicated in equations (l.lO), the 
corresponding expressions for the constants of motion and from them select the 
independent constants which allows its extension to the quantum case. 

For X = 1 and X = -1 the sets are given by { X , N , , z , , z ; }  and {II ,N2,zl ,z i )  
respectively. In order to identify the symmetry algebra, we calculate its Poisson 
brackets, and clearly they correspond to the direct sum of one-dimensional Weyl and 
unitary algebras, w( 1) @ U( 1). 

For the cases X > 1 and X < -1, the constants of motion are identical to each 
other and from them we choose the set 

1 1 
h,  = -NI - -", 

k, k2 
(3 .14~)  

(3.146) 1 
(NI - N2) nL - - - k, - k, 

(3 .14~)  

(3.14d) 

where E = 1. The constants h,  and nil are proportional to the Hamiltonian and 
the third component of the angular momentum, respectively. The calculation of the 
Poisson brackets gives 

{ml,  Ii5) = - i I i s  
{ml, = i l i ,  (3.15) 

{ ~ i ~ ,  ~ i ~ )  = i ( k ; ~ ~  + k ; ~ , )  N ; I - ~ N ; ~ - ~  
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and all other are zero. In order to identify a t i e  algebra, the constants of motion K5 
and I{, are multiplied by functions of N ,  and N 2 ,  whose Poisson bracket vanishes, 
as follows: 

K i = K ( N 1 , N 2 ) K i  i = 5 , 6 .  (3.16) 

The functions F, and F, are defined in such a way to obtain that the Poisson bracket 
is 

(3.17) ( IZ5, I&} = icm, 
where C is a constant that can be f l .  This condition implies that (cf appendix A) 

(3.18) 

Thus one concludes that the set of constants of motion { h , ,  m l ,  K5, K 6 )  constitute 
the classical symmetry Lie algebra for this case which, depending on the value of C, 
can be identified with a u(2) or u(1,l)  algebra. 

For -1 < X < 1 we select the following independent constants of motion: 

(3.19a) 

(3.196) 

(3.19~) 

(3.19d) 

where the value t = -1 was used and a combination of N I  and N ,  proportional 
to the Hamiltonian, h,, and angular momentum, m,, were selected. The Poisson 
brackets between the constants (3.19) are 

{m,, IC3) = - iK3 
{ m2, IC4} = i IC4 (3.20) 
{1i3, ii4) = -i ( k ; ~ ~  - k ; ~ , )  N ; I - ~ N ~ z - ~  2 

and all the others are zero. Proceeding in the same way as in the previous case we 
can normalize Ii3 and IC4 through functions of N I  and N,, namely 

R-, = F,(N,,N2)Iiz i = 3 , 4 .  (3.21) 

Functions F3 and F4 are defined to give the Poisson bracket 

( IT3, IT4} = iCm2 (3.22) 

where C is Al .  This condition implies that 

( N ,  - N ~ ) ~  N ; ~ ' N - ~ ~  F, F4 = 2 '  
C 

2 (kI + k,)' 
(3.23) 

Therefore the set of constants of motion { h 2 ,  m2 ,  K 3 ,  I;h) generates the classical 
symmetry Lie algebras u(2) or u(1, l ) ,  depending if the value of C is 4-1 or -1, 
respectively. 
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4. Quantum symmetry algebra for the Hamiltonian 

'lb quantize the system we replace the classical variables z and p by the corresponding 
quantum operators in definitions (3.13). and Poisson brackets by commutators, i.e. 
{) -+ [I. Then the classical variables z, and zi, are replaced by the operators 

0 CaslaAos and R Lbpez-Peria 

1 
I +  - - (2, - iBk) (4.la) 

1 2, = - (5 ,  t ie,) Jz k -  x2 
which satisfy the commutation relations of creation and annihilation operators 

p k # , 2 ! ]  = 6,,,. (4.lb) 

We choose as a complete base for the physical space the simultaneous eigenstates 
of { N 1 , N , ) ,  which we label as In,,nz), because they form a complete set of 
commuting operators. This lets us see that not all operators in (3.13) make sense at 
all times. According to section 3 we are led to consider three cases: 

(i) Fbr X = f l ,  we have two sets of operators, {I, is,, I,, S i ]  and {I, is2, I,, Si}, 
whose commutation relations correspond to the direct sum w( 1) @ U( 1). 

(ii) When X > 1 and X < -1, the set of constants of motion (3.14) is replaced 
by its quantum version, and their commutators are given by 

[ f j L , , f i 5 ] = f i 5  [ f j L , , & ] = - &  (4 .24 

(4.B) 
(is, t k,)! (fi, t k2)! - fil ! f12 ! [I&, f i 6 ]  = 

( i s , - k , ) ! ( i s 2 - k z ) !  is, ! is* ! 

and all the others commutators are zero. The algebra is closed, but to identify 
a symmetry Lie algebra we must redefine the operators t5 and t6. Using the 
properties 

F ( i s , ) I i  = 2 , F ( f l i  - 1) 

F ( f l ; ) i /  = $ F ( i s ;  + 1) 

we obtain that the new operators 

(mi - k;)! i " + h ,  i/ = ( F (  is,) ) zi i =  1,2 
(is;)! 

whose Hermitian conjugates are 

which satisfy the commutation relations 

(4.3) 

(4.44 
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and I?, as Redefining the operators 
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(4.6) p - i t 4  I ? - - -  
5 -  1% 6 - z1z2 

and taking into account that $, = ili, = ili, = fi, results in the commutator 

[l?5,1?e] = - ( F ( f i 2 +  k 2 ) -  F ( H 2 ) ) i l i l  - (F(&' ,  + k l ) -  F ( f l l ) ) i 2 Z l .  (4.7) 

From (4.5) and (4.7) we see that it is convenient to define F( 8) = 8, because we get 

[ i i , Z i ] = k l  [f<s,L,]= - k 2 f l l - k l ~ 2 - k l k z  i = l , 2 .  (4.8) 

However, we must be careful and observe that the relations (4.8) are not valid when 
applied to states In,, n2) with n, < IC, or n2 < I C 2 .  Tb have commutation relations 
of creation and annihilation operators which are valid in the complete Hilbert space 
generated by the states Inlr n2), one must make the definitions [7] 

where 1.1 denotes the largest integer < 2. From (4.9) it is easy to check that 

Then the Lie algebra is identified by considering the following operators 

(4.96) 

(4.10) 

(4.11a) 

(4.1 lb) 

(4.11~) 

(4.11d) 

that satisfy the commutation relations 

~- 
[C , , k5]  = is [Cl,k6] = - f i e  [K5, k,] = -2C,. (4.12) 

These were evaluated by using the fact that [;,,;:I = 6,,, for any state In,, n2), 
and they are the generators of a U( 1 , l )  Lie algebra, with A, generating the invariant 
sub-algebra. 
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(iii) Finally for -1 < A < 1, the symmetry algebra is constituted by the quantum 
They satisfy the following analogues of the set of constants of motion (3.19). 

commuta tion relations: 

[ I jL2 ,  IC;] = IC; [ I jL2 ,  P4] = -k4 (4.13a) 

and all the others commutators are zero. They generate an algebra, but to give a Lie 
algebra a redefinition of the operators k3 and k4 must be done. Proceeding as in 
the previous case, ie. using the creation and annihilation operators defined in (4.9). 
we consider the operators 

(4.14) f{ - z t =  g, - 5’’ 3 - *1=2 4 - 221.  

Evaluating the commutation relations between the operators 

ii2 = A, + A, C, = $(NI - N 2 )  (4.15) 

together with k, and I?, we have 
- -  

[C,, A,] = 6, [C,, I=i4] = -I?, [A-3,z4] = 2C2 (4.16) 

and the operator i2 is the ideal of the algebra. Thus we get for this case a u(2) 
symmetry Lie algebra. 

5. Conclusions 

We have established a procedure that uses Noether’s theorem to find the symmetry Lie 
algebra of a quantum system with accidental degeneracy. The main foundations are 
the following. Firstly, to solve the differential equations that determine the constants 
of motion (cf equation (3.11)). Secondly, once we have chosen the minimal set of 
constants of motion that are closed under Poisson brackets, to identify the classical 
Lie algebra one needs in general to form combinations of the selected Noether 
charges. Thirdly, to find the corresponding quantum counterparts. Afterwards, the 
identification of the quantum symmetry Lie algebra can be done immediately by 
making tiie standard repiacemeni of Poisson brackeis by commutators. iiowever, 
this is only true if there are not ambiguities in establishing the associated quantum 
operators for the constants of motion which form a Lie algebra under the Poisson 
bracket operation. If this is not the case, it is more mnvenicnt to choose the minimal 
set of constants of motion that allows a quantum extension, and make the necessary 
redefinitions to build the associated Lie algebra of the system. Following this 
procedure we get for the generalized anisotropic two-dimensional harmonic oscillator 
(1.5) the symmetry algebras which determine the degeneracy of the system. The 
symmetry Lie algebras are, depending on the value for A, w(1) f3 u ( l ) ,  u(2), and 
u(1 , l ) .  However with the generators of the first one a Holstein-Primakoff realization 
[11] of an U( 1,l) Lie algebra can he obtained. 
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Appendix A 

The Poisson brackets between N I  and N ,  are  zero, and 

{ N l , K 3 }  = - ik l I i3  

{K3,1<-.,} = - i ( k i N l  - k:Nz)  NIk' -1N2k2- ' .  

{N2 ,K3)  = ik21t-3 
{N1 ,K4}  = iklhw4 { N 2 , K 4 }  = - i k 2 K 4  (AV 

Let us choose normalization functions F, = F , ( N , ,  N , )  such that by defining 

I?, = F , K ,  i = 3,4  (W 
we obtain 

where C is a constant, and the quantity on the right-hand side, the angular 
momentum, is always independent of the Hamiltonian. A direct calculation gives 

{F31iw3, F41iV4} = -iF3F4 ( k i N ,  - k f N 2 )  Nf l - 'Nk ' - '  2 

Substituting the last expression into equation (M), we get a differential equation for 
F3F4, and we propose, for it, a solution of the form 

F,F, = N ; ~ ~ N ; ~ Z P ( N ~ ,  N , ) .  (AS) 

In this way we get 

Making the change of variables 

M = N I  - N ,  1 1 
h ,  = - N I  + - N z  

kl k2 

the equation (A6) is rewritten as 

whose solution is immediately seen to be 

Choosing g (  h Z )  = 0 we get the solution (3.23). 
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